Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes and determination of autoantibodies using a radioligand produced by eukaryotic expression.

نویسندگان

  • L A Velloso
  • O Kämpe
  • A Hallberg
  • L Christmanson
  • C Betsholtz
  • F A Karlsson
چکیده

Plasmids containing cDNA for the rat 67- and 65-kD isoforms of glutamate decarboxylase (GAD-67 and GAD-65) were expressed in COS-cells, and lysates of [35S]methionine-labeled cells were used for immunoprecipitations. Sera from 38 patients with type 1 (insulin-dependent) diabetes mellitus, which precipitated a 64-kD antigen from rat islets, reacted with recombinant GAD-65 in relation to their anti-64-kD titers. The eight strongest sera also precipitated recombinant GAD-67, suggesting that certain epitopes are common to both isoforms. Subsequently, [35S]methionine-labeled GAD-65 was purified from COS cell lysates and employed in a binding assay with 50 sera of patients with recent onset of type 1 diabetes mellitus. 38 sera (76%) precipitated labeled GAD-65 with titers that correlated with islet cell antibodies (ICA), determined in a standard immunofluorescence assay. 2 sera were GAD positive but ICA negative, 4 were positive only for ICA, and 6 were negative for both GAD and ICA, as were the sera of 20 controls. The data illustrate that antibodies against GAD-65 are present in a majority of patients with type 1 diabetes mellitus and that autoantibodies against other islet cell antigens also exist. The radioligand-binding assay, which is convenient and sensitive for detecting GAD antibodies, will facilitate the screening of individuals with autoimmune islet cell disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain

Background: Gamma -aminobutyric acid (GABA), a non-protein amino acid acts as an inhibitory neurotransmitter in the central nervous system of mammalians. The glutamate decarboxylase (GAD) is responsible for the conversion of L-glutamate to GABA. The human brain has two isoforms of this enzyme, GAD65 and GAD67 that differ in molecular weight, amino acid sequence, antigenicity, cellular location ...

متن کامل

INVESTIGATION ON ANTI-GLUTAMIC ACID DECARBOXYLASE ANTIBODIES IN TYPE I DIABE TES MELLITUS

Antibodies directed against the enzyme glutamic acid decarboxylase (GAD) are believed to be the main cause of destruction of pancreatic islet cells in type I (insulin dependent) diabetes mellitus. The enzyme was found both in the brain and pancreatic beta cells. Although similarities in identity of GAD in human and rat brain have been demonstrated, little is known about the interaction betw...

متن کامل

میزان اتوآنتی‌بادی ضد گلوتامیک اسید در بیماران دیابتی نوع دو و وابستگان درجه اول آنها

Glutamic Acid Decarboxylase(GAD) catalyses the conversion of glutamic acid to Gama amino Butyric Acid(GABA) which is one of the major inhibitory neurotransmitters in central nervous system. GAD has two isoforms with molecular weights of 65 Kda(GAD 65) and 67 Kda (GAD 67). GAD 65 gene is located on chromosome 10 and expressed in β-cells of pancrease. The presence of high concentrations o...

متن کامل

P102: The Association of the Anti-GAD Antibodies to the Neurological Conditions

Glutamic acid decarboxylase (GAD) is an enzyme which converts the glutamic acid to the neurotransmitter gamma-amino butyric acid (GABA). GABA is an inhibitory neurotransmitter that inhibits or weakens the neuronal stimulations. Presynaptic GABAergic neurons in the central neurons system (CNS) and the cells in the islets of Langerhans in the pancreas generate GAD. There are two isoforms of GAD n...

متن کامل

Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in stiff-man syndrome

Glutamic acid decarboxylase (GAD) is the enzyme that synthesizes the neurotransmitter gamma-aminobutyric acid (GABA) in neurons and in pancreatic beta cells. It is a major target of autoimmunity in Stiff-Man syndrome (SMS), a rare neurological disease, and in insulin-dependent diabetes mellitus. The two GAD isoforms, GAD-65 and GAD-67, are the products of two different genes. GAD-67 and GAD-65 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 91 5  شماره 

صفحات  -

تاریخ انتشار 1993